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Abstract

Learning Full-Body Motions from Monocular Vision in Real-Time:
Dynamic Imitation in a Humanoid Robot

Jeffrey B. Cole

Chair of the Supervisory Committee:
Professor Maya Gupta
Electrical Engineering

In an effort to ease the burden of programming motor commands for humanoid robots,

a computer vision technique is developed for converting a monocular video sequence of

human poses into robot motor commands for a humanoid robot. The human teacher

wears a multi-colored body suit while performing a desired set of actions. Leveraging

the colors of the body suit, the system detects the most probable locations of the

different body parts and joints in the image. Then, by exploiting the known dimen-

sions of the body suit, a user specified number of candidate 3D poses are generated

for each frame. Using human to robot joint correspondences, the estimated 3D poses

for each frame are then mapped to corresponding robot motor commands. A set of

kinematically valid motor commands is generated using an approximate best path

search through the pose candidates for each frame. Video processing is performed

with a distributed algorithm using a cluster of 25 computers allowing for real-time

motor command generation. The viability of the approach is demonstrated by pre-

senting results showing a full-body imitation of human actions by a Fujitsu HOAP-2

humanoid robot in real-time.
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Chapter 1

INTRODUCTION

Teaching complex motor behavior to a robot can be extremely tedious and time

consuming. Often, a programmer will have to spend days deciding on exact motor

control sequences for every joint in the robot for a pose sequence that only lasts a few

seconds. A much more intuitive approach would be to teach a robot how to generate

its own motor commands for gestures by simply watching an instructor perform the

desired task. In other words, the robot should learn to translate the perceived pose

of its instructor into appropriate motor commands for itself. This imitation learning

paradigm is intuitive because it is exactly how we humans learn to control our bodies

[1]. Even at very young ages, we learn to control our bodies and perform tasks by

watching others perform those tasks. But the first hurdle in this imitation learning

task is one of image processing. The challenge is to develop accurate methods for

extracting 3D human poses from monocular image sequences.

The work presented in this thesis is an attempt to address the issues of motor

command generation for robotic imitation and to explore the benefits and limitations

of using only a monocular video sequence to automatically generate motor commands

in real-time for a humanoid robot.

Chapter 2 provides the reader with some useful background information about im-

itation learning and pose estimation for humanoid robots. It also provides references

for similar work in the literature. We then propose a new algorithm for converting

monocular video sequences into motor commands for a humanoid robot in chapter 3.

In an effort to achieve real-time frame rates, we then turn our focus towards explor-
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ing methods for distributing the algorithm among an arbitrary number of processors.

Chapter 4 describes how the algorithm was redesigned so that a cluster of processors

could work together to achieve arbitrarily high frame-rate analysis in real-time.

In Chapter 5, we show examples of the types of imitation learning that we were

able to achieve using our proposed algorithm. Chapter 6 is used to present some

alternative approaches and possible future improvements that were explored during

the course of developing the algorithm described in this thesis. Finally, Chapter 7

presents conclusions along with a general discussion of the main contributions of our

work to the field of imitation learning for humanoid robots.
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Chapter 2

BACKGROUND

Imitation learning in humanoid and other robots has been studied in depth by

a wide array of researchers. Early work such as [2, 3] demonstrated the benefit

of programming a robot via demonstration. Since then researchers have addressed

building large corpora of useful skills [4, 5, 6], handling dynamics [7, 8], studied

biological connections [9], or addressed goal-directed imitation [10].

Typically a marker based motion capture system is used to estimate human poses

as input for training robots to perform complex motions. This requires a full motion

capture rig to extract the exact locations of special markers in a restricted 3D space.

An instructor is typically required to wear a special suit with careful marker place-

ment. The motion capture system then records the 3D position of each marker and

recovers degree-of-freedom (DOF) estimates relative to a skeletal model using vari-

ous inverse kinematic techniques. Due to careful calibration of the cameras, highly

accurate pose estimates can be extracted using multi-view triangulation techniques.

The biggest downside to using a motion capture rig in our imitation learning

scenario is that training can only be performed in a rigid (and expensive) environment.

Also, the motion capture system is unsatisfying because it does not allow the robot to

behave autonomously. In this thesis we demonstrate initial steps in allowing the robot

to use its own vision system to extract the 3D pose of its instructor. This allows us

to “close the loop” for the learning process. Using only its own eyes, a robot should

be able to watch an instructor, convert what it sees into a sequence of 3D poses, and

then translate that sequence into appropriate motor commands.

A large body of work has studied the problem of performing pose estimation
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from vision. Early computational approaches [11, 12] to analyzing images and video

of people adopted the use of kinematic models such as the kinematic tree model.

Since these earliest papers many systems have been proposed for pose estimation and

tracking (for examples see [13, 14, 15, 16]), yet none have significantly supplanted

marker based motion capture for a broad array of applications.

The biggest limitation of many of these vision-based pose estimation techniques

is that they require multiple, distant and often carefully calibrated cameras to be

placed in a ring around the instructor. While more portable and less costly than

a commercial motion capture rig this is still not desirable for autonomous robotic

imitation learning. Thus in this thesis we propose a method which relies solely on

the robot’s own commodity monocular camera. We note that our work on monocular

pose estimation builds on previous techniques for solving the human and limb tracking

problem using learned image statistics [17, 18, 19, 20, 21].
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Chapter 3

POSE ESTIMATION ALGORITHM

As an alternative to expensive and cumbersome motion capture systems, we have

developed a new approach to estimating human poses using only a single, uncalibrated

camera and a multi-colored body suit. The method uses a nonparametric probabilis-

tic framework for localizing human body parts and joints in 2D images, converting

those joints into possible 3D locations, extracting the most likely 3D pose, and then

converting that pose into the equivalent motor commands for a HOAP-2 humanoid

robot. The algorithm is highly parallelizable and thus we demonstrate how real-time

analysis can be performed using a cluster of processors. The overall flow of the data

processing is shown in Figure 3.1.

Figure 3.1: General overview of the proposed approach to pose estimation. Each
column indicates a step in the proposed algorithm for converting a raw video sequence
into a set of motor commands for the humanoid to perform.
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3.1 Detecting Body Parts

The first step of the process is to detect where the different body parts are most

likely located in each frame of the video sequence. Since we have granted ourselves

the concession of using clothing with known colors, body part detection is done by

training a classifier in RGB color space.

During the training phase, the user labels example regions from a single frame of

the video sequence. The RGB values of the pixels in each region are then fit with

Gaussian distributions and the 3D curve fit parameters are saved to a file. An example

of hand selected upper body parts and their RGB color clusters are shown in figure

3.2.

Figure 3.2: RGB training for body part detection. The left image shows hand selected
body part regions and the right plot shows each body part’s color clusters.

Once the color distributions have been learned for each body part, it is relatively

fast and easy to detect the probable body part locations in any other frame from the

sequence. For example, figure 3.3 shows the probability of each pixel being a member

of a body part class, where intensity of the image encodes the relative likelihood. To

increase the speed of this step of the algorithm, we downsample each dimension of the
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RGB space from 256 to 50, reducing the number of possible colors from 16,777,216

to 125,000. We then precompute a lookup table for each bin’s probability of being a

member of each body part class. This allows the part location probability maps to be

generated for each body part in each frame of the video sequence with very limited

processing time. Processing time is also reduced by taking advantage of the fact that

each pixel can be processed in parallel. Since all processors used in this work have

dual cores, we were able to distribute body part detection for each frame, doubling

the rate at which images are converted to body part probability maps.

Figure 3.3: Probability map for the location of each upper body part in the given
frame. The value assigned to each pixel in the map is found by evaluating the pixel’s
RGB values using the previously trained Gaussian distributions. Intensity of the
image on the right indicates the relative likelihood of a pixel being a body part.

3.2 Converting Body Parts into 2D Joint Location Probability Maps

Once probability maps have been generated for each body part, we need to then use

these maps to determine where the shoulders, elbows, wrists, hips, knees, and ankle
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joints are located. We expect a body joint to be located in the highest probability

overlap region between the two body parts that meet at the joint.

To be more formal, if we have a probability distribution function (PDF), Pupper(x, y),

for the location of the upper right arm and we have a PDF, Plower(x, y), for the loca-

tion of the lower right arm, then we will expect the right elbow joint to be located at

the pixel coordinates that satisfy the equation:

argmax
x,y

(Pupper(x, y)× Plower(x, y)) (3.1)

However, when working with the actual body part location maps generated, we

find that there are usually no single pixels which exhibit high probability of mem-

bership in any two body part classes, and full regions of overlap for body parts are

practically non-existent. In other words, most pixels only have negligible probability

of membership to a single body part class. In order to generate reasonable overlap

regions we first perform a slight spatial blurring of the body part maps. Also, we

do not want to generate a single point for each joint in the body as that would not

allow us to be robust to occlusions or noise. Instead, we would rather generate a new

non-parametric PDF for each joint location that can be sampled to generate discrete

candidate human poses.

So, for every pair of body parts that are connected by a joint, the system performs

two steps to generate a joint location probability map. First, each body part proba-

bility map is spatially blurred with a Gaussian kernel with a variance of 1 pixel. To

speed up processing this blurring is performed in the frequency domain using FFTs.

Then, for every pair of body parts that are connected by a joint, the spatially blurred

body part maps are multiplied together and the resulting map is normalized so it is

a valid PDF for the current joint. The resulting maps characterize the most likely

locations for each of the instructors joints in the current 2D video frame. An example

of a 2D joint location probability map is shown in figure 3.4.

Much like body part detection, the joint location probability map generation step
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is highly parallelizable. Utilizing the dual core processors in our system, we were able

to halve our processing time by distributing the processing among both cores.

Figure 3.4: Example of a probability map for the 2D locations of each joint for the
video frame shown on the left. Joint maps are found by multiplying together blurred
versions of each of the body part maps.

For the work described herein, the lower body joint localization was done directly

through color detection unlike the upper body where full parts were detected first and

then converted into joint locations. The differences in processing of the lower body

and upper body are meant to illustrate two varying methods for joint localization.

Detecting the joints directly from color is much faster but is more likely to result in

joint locations being lost due to self occlusions throughout the video sequence. The

technique used on the upper body is more robust to occlusions as there is a larger

region of color to detect and the likelihood of full occlusion of a body part is much

lower than occlusion of a joint. However the processing time required is considerably

higher when body part locations need to be converted into joint locations.
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3.3 Sampling 2D Poses From The Joint Maps

The next step the system takes is to randomly sample N different 2D poses from

the joint location distributions. The sampling is done with replacement using the

non-parametric PDF of each joint to control the sampling. In other words, we use

the PDF of each joint to generate N likely {X, Y } coordinates for that joint. All

the candidate 2D joint locations are grouped together to make N candidate poses.

The poses thus generated are a collection of the most likely poses estimated from a

single frame. Figure 3.5 shows an example of 50 2D poses sampled from a set of joint

distributions.

Figure 3.5: Example of 50 2D poses sampled from the joint distribution maps. Red
dots indicate sampled joint locations and the green lines show which joints are con-
nected in each sample pose.
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3.4 Converting 2D Poses into 3D Poses

Converting the 2D poses into poses in 3D space is done by detecting foreshortening

and requires that we exploit the approximate known dimensions of the human body.

In this system, all body part lengths are measured with respect to the length of the

torso. This helps make the system more robust and allows the trainer to be any

distance from the camera. In our course model of the human body, the shoulder line

is 0.6 times the length of the torso, the upper arms are 0.4 times the length of the

torso, and the lower arms are 0.35 times the length of the torso. However, this model

could be extended to the case of multiple human instructors by learning probability

distributions over the lengths rather than a single proportional length.

Converting a given 2D pose into 3D is thus a matter of figuring out how far

forward or backwards each joint needs to move in order to make each body part the

correct length in 3D space. For example, if the upper left arm is measured to be

length Dmeasured in the current 2D pose and the upper left arm is supposed to be

length Dtrue in 3D space, then the left elbow could either be forward or backwards

the distance Doffset, where

Doffset = ±
√

D2
true −D2

measured. (3.2)

The limitation of using foreshortening to generate candidate 3D poses is that the

user cannot bend forward at the waist during the video sequence or the normalization

factor will be thrown off. The user can, however move in any other manner desired.

The user can freely move any distance from the camera. Also, if the user is not

facing the camera (or even with his back to the camera) the system will detect the

foreshortened shoulder width and still be able to generate 3D poses.

As an illustrative example, a top down view of how a single 2D upper body pose

can be converted into 64 (26) possible 3D poses is shown in Figure 3.6. Figure 3.7

shows a frontal view of the results of 2D to 3D conversion using the above described

method.
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Figure 3.6: This figure shows a top down view of how a single 2D upper body pose
would be converted into 64 different possible 3D poses. Grey lines indicate the mea-
sured length of the 2D pose body parts and the red lines indicate the possible poses
in 3D.

Figure 3.7: This figure shows results for a single 2D pose (left) converted into all
possible 3D poses (right).
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3.5 Converting 3D Human Poses into Robot Angles

The robot’s upper body has 8 degrees of freedom (3 for each shoulder and one for

each elbow) and the lower body has 12 degrees of freedom (3 for each hip, 1 for each

knee, and 2 for each ankle). Each degree of freedom is controlled by a servo motor.

We use position-based control so motor commands are simply joint angles from an

initial “rest” state.

Converting each of the 3D poses into the corresponding angles for the robot joints

is performed differently for the upper body and lower body.

The upper body angles are found directly using linear transformations. Starting

with the upper left arm, the system detects the amount of forward/backward rotation

in degrees, saves that angle, and then simulates a rotation of all of the left arm joints

about the shoulder using the negative of the found angle. This procedure is carried

out for each of the degrees of freedom until all of the joints have been rotated back

to their initial state. Thus, after finding all the angles required to get the 3D pose to

its zero state, we have all the motor commands the robot needs to perform to get to

the current 3D pose.

During this conversion from joint locations to angle space, we can take advantage

of our known model of the instructor’s dynamic capabilities. Any time that an angle

which is outside of a human’s natural motion is detected, the entire pose is thrown

out and the system immediately moves on to process the next candidate 3D pose.

For example, if the system finds that the robot will have to bend its elbow backwards

to get its hand to the desired 3D location, it can reject the entire candidate pose.

Essentially we have imposed a hard prior on the expected motor commands for a

human instructor. This both saves processing time and greatly reduces the number

of 3D poses that are generated for the given frame.

Unlike the upper body, the lower body angles are solved using inverse kinematics

and an iterative optimization. To find the angles that generate each of the desired 3D
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leg positions for a given pose, the degrees of freedom are adjusted iteratively using

the Nelder-Mead Simplex Method until the ankle and knee locations converge to the

desired 3D points.

The discrepancy between the upper and lower body processing techniques is due

to the different motor configurations for arms and legs on the HOAP-2 humanoid.

Ambiguities that arise from the motor configurations in the robot hip made it impos-

sible to isolate the hip angles serially as was done with the upper body angles. The

direct technique used on the upper body is much faster than the iterative technique

used on the lower body.

3.6 Finding the Smoothest Path Through the Frames

After performing all the steps listed above, the system is inevitably left with a fair

number of possible poses (motor commands) it could send to the robot for any given

frame in the sequence.

Initially, we tried to implement a full tree search to look forward a few frames and

decide which complete path would be the smoothest. We define smoothness as the

minimum sum of Euclidean distances between the motor commands sent to the robot

over an entire sequence of poses. However, an exhaustive search of the space proved

to be very computationally intensive as the branching factor of the tree is quite large

(usually between 10 and 300 poses per frame). Finding the best path by searching

through all possible poses for even a modest 5 future frames for a real-time system

would potentially become unmanageable with today’s current processor technology.

To bypass this issue we only keep a finite number, M , of the smoothest paths as

we search forward in time through the space. (For the results shown in this thesis M

was set to 10.) As each frame is processed, we reassess the best M paths through the

candidate poses. Any pose that is not included in one of the best paths is thrown out

so as to reduce the search size for the next frame. This trimming method is similar

to a forward Viterbi search except that our set of possible states in each frame is not
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discrete and so we are forced to pick an arbitrary number of best paths.

Almost inevitably, we eventually get to a point in time where all M paths agree

on the best pose to use for a given frame in the past. Once this agreement is reached

by all M paths, the motor commands for that frame can be sent on to the robot.

It is important to note here that we are not guaranteed to have convergence on

a single pose for each frame of a finite video sequence. However, as we step forward

in time processing frames, we become less and less likely to have disagreement about

the best poses in the past. As a practical measure in this algorithm, we set a limit

as to how many frames, L, the robot is allowed to lag the instructor before making a

decision as to the preferred pose to assume. So even if the M best paths still have not

converged on a single pose for the frame that we received L time steps in the past,

we will force the system to just choose the pose that is associated with the best path

at that time. For the results presented in this thesis, L was set to 5 frames.
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Chapter 4

DISTRIBUTED PROCESSING

Ideally, a robot that is capable of learning through imitation should be able to

process visual data in real-time. A long delay in processing times would mean that the

robot would either have to use a video frame-rate that is unacceptably slow to capture

the nuances of human motion, or the entire gesture would have to be prerecorded and

then processed offline before imitation could be performed. Both scenarios are not

satisfying because they limit the types of gestures that can be imitated and make real-

time feedback in the learning process impossible. If instead, the robot was capable of

working at arbitrarily fast frame rates, then real life motions that require high frame

rates such as swinging a golf club could be accurately analyzed and interactively

imitated.

4.1 Single Processor Limitations

Our initial efforts at implementing the algorithm described in chapter 3 were per-

formed using a single core processor clocked at 1.75 GHz on images with a resolution

of 320x240 pixels. At that speed, we were able to achieve a frame rate of 3 frames

per second after a considerable number of coding tricks were applied to the algorithm.

However, frame rates of at least 15 to 30 Hz would be needed to accurately capture

most standard human motions in real-time.

4.2 Redesigning for Multiple Processors

In an effort to achieve real-time frame rates, we turned our focus towards exploring

methods for distributing the algorithm among an arbitrary number of processors.
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The first step to redesigning any system to exploit multiple processors is to identify

which steps in the algorithm could be performed in parallel. In our case, the conversion

of a single frame of video to a set of candidate poses does not require any information

from other frames of the sequence. The only step that needs to be performed serially

in our algorithm is the search for the smoothest set of motor commands through the

set of candidate 3D poses (as described in section 3.6). Thus it is possible to let each

frame of the video sequence be processed by an independent processor and then use

a single processor for the final best-path search.

For the work presented in this thesis, we performed all processing using a Linux

cluster of 25 dual-core 1.7 GHz processors. One processor was used as the data dis-

tributor (Dnode), another was used as the candidate poses collector (Cnode), and the

rest of the nodes were used as general worker nodes (Gnodes) for converting single

frames of video into candidate poses. An overview of the distribution/collection pro-

cess is presented in figure 4.1. All code was written in C++ and all communications

between nodes was made using TCP socket send and receive commands.

Figure 4.1: Schematic showing how the processing is distributed to a pool of nodes
that send their results to a collector node for final analysis.
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4.3 Distributor Node

The distributor node, Dnode, functions primarily as a task manager for the general

worker nodes. It is designed to act as both a server (receiving frames from the

camera) and a client (sending video frames to individual worker nodes). Initially the

distributor node sits idly waiting for the first frame of video to be received. When

the first frame is sent from the camera, the Dnode checks to see which of the Gnodes is

available for processing and then assigns that video frame to the available Gnode.

4.4 General Processing Nodes

Like the Dnode, the general processing nodes, Gnodes, function as both a server and a

client. Their server task is to wait for and receive a frame of video from the Dnode.

Upon receiving an image, the Gnode will follow all of the steps described in sections

3.1, 3.2, 3.3, and 3.5 to convert the image into a set of candidate motor commands.

When finished processing a frame, the Gnode will then act as a client and send the

resulting candidate motor commands to the collector node Cnode. The Gnode will also

send a signal to the Dnode to let it know that it is now available to process another

video frame.

4.5 Collector Node

The collector node, Cnode, is perhaps the most overworked node in the system. The

Cnode is responsible for receiving candidate poses from all the Gnodes, finding the

smoothest path through time (as described in section 3.6), and sending final motor

commands to the robot. The computational burden on the Cnode is due to the serial

nature of its processing task. For every frame that is received from a Gnode, the Cnode

has to re-analyze the smoothest path through time and then decide whether to send

a final pose to the robot to perform.
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Chapter 5

RESULTS

A monocular vision real-time imitation learning system was constructed as de-

scribed in chapters 3 and 4. The resulting work is a complete closed loop system with

a humanoid robot capable of imitating a human instructor by processing monocular

video at 15 to 20 frames per second on a distributed framework. As our work resulted

in a functioning system, there is no single experimental result to present in this chap-

ter. Instead we will show and discuss images from a number of live demonstrations

we recorded upon completion of the system.

5.1 Real-time Demonstration with Instructor, Robot and Simulator

Figure 5.1 shows the setup for a demonstration that was performed in September,

2007. The instructor is shown standing in the center of a room. To his right is a

graphical simulation of the robot projected on the wall and to the instructor’s left

is the real humanoid robot, suspended from the waste by a harness. A monocular

camera (not visible in the image) is positioned in front of the instructor to act as

the robot’s eye. It should be noted that the monocular camera used to watch the

instructor was taken directly from the robot’s head and positioned in front of both the

instructor and the robot only to make the demonstration visually easier to document.

The simulation of the robot was used to show how the robot visualized itself

performing the gestures, unconstrained by the physics of self collision and gravity.

As we will discuss, the final motor commands actuated by the robot sometimes differ

from the desired motor commands generated by the system. Specifically, in cases

where performing the gesture would result in self collision, the robot simply ignores
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Figure 5.1: Setup for a full system demonstration of real-time imitation using the
HOAP-2 humanoid robot.

the impossible gesture and waits for the next physically possible portion of the motor

command sequence. The work presented in this thesis does not address issues of self

collision or stability and balance.

The demonstration consisted of the instructor performing a number of gestures

while the robot imitated the gestures with approximately one second of lag-time. For

the first demonstrated gesture the instructor puts his arms out and raises his left leg

and balances on one foot. Since the robot is attached to a waist harness, there are no

complications from the issues of stability and balance, and after a one second delay,

the robot imitates the leg lift in a visually satisfying manner. The second gesture

performed is a kicking motion. Similar to the first gesture, this leg kick is imitated by

the robot exactly as was planned by the algorithm without any self-collision issues or
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balance corrections and results in a visually satisfying imitation of a leg kick motion

by the humanoid robot.

For the third gesture in the demonstration, the instructor puts his left arm out to

his side and swings his right arm in a whirlwind motion. In this case, the computer

simulated version of the robot performs a similar gesture to the instructor. However,

the motor commands generated would have caused the robot’s right hand to collide

with his torso so the gesture is aborted by the real robot.

The rest of the gestures presented in the video demonstrate successful imitation

by the real robot and do not suffer from the self-collision issues of the previous arm

motion. Gestures performed in the demonstration include a squatting motion, another

leg lift, an arm in front of the body motion, and a waving motion of both arms similar

to a hula dance.

5.2 Imitation Sequences with Intermediate Results

In a separate video demonstration, the robot imitates two gestures from the instruc-

tor and we present two figures that show intermediate results for each stage of the

processing algorithm. The first gesture is primarily an upper-body gesture and is

shown in figure 5.2. In this sequence, the instructor puts both of his arms in front of

his torso and then ends by putting both of his arms above his head and waving. The

second gesture performed is primarily a lower-body gesture and is shown in figure

5.3. In this sequence the instructor raises his left leg and balances on his right leg.

Both figures show key frames of the visual input to the robot, body part detection

results, joint location results, discrete sampled candidate poses, simulated imitation

in a visualizer, and the resulting performance by the physical robot.
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Figure 5.2: Results of pose estimation for a monocular video sequence of a primarily
upper-body gesture. Column (a) shows the raw video sequence for a leg lift gesture.
Column (b) shows the probability maps for body part locations in each frame of the
sequence. Column (c) shows the probability maps for body joint locations. Column
(d) shows candidate 2D poses sampled from the joint location maps. Column (e)
shows a computer simulation of the robot performing the final motor commands.
Column (f) shows the humanoid performing the resultant gesture.
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Figure 5.3: Results of pose estimation for a monocular video sequence of a leg lift
gesture. Column (a) shows the raw video sequence for a leg lift gesture. Column (b)
shows the probability maps for body part locations in each frame of the sequence.
Column (c) shows the probability maps for body joint locations. Column (d) shows
candidate 2D poses sampled from the joint location maps. Column (e) shows a
computer simulation of the robot performing the final motor commands. Column (f)
shows the humanoid performing the resultant gesture.
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Chapter 6

ALTERNATE APPROACHES AND IMPROVEMENTS

The results presented in the previous chapter were generated using the algorithm

as described up to this point. However, there have of course been a number of

modifications and alternate approaches that were explored during the course of this

work. In this chapter we present some of these alternate approaches and also present

some ideas for ways that the algorithm could be improved in future work.

6.1 Alternate Color Spaces and Classification Techniques

Body part localization through color classification is an early and critical step in the

imitation algorithm. For all results presented in this thesis, the image data was left

in its raw RGB formats and body part training and classification were performed

without any color transformations to alternate color spaces. However, when using

the finished system, we did find that lighting changes in the room had noticeable

deleterious effects on the ability to detect body parts.

An obvious, and relatively simple improvement to the work presented in this thesis,

was to perform a transformation of pixel values into a color space, such as HSV or

CIELAB, that is less affected by lighting changes in a scene. With this concept in

mind we coded the system to be able to work in any 3-dimensional color space and

initial testing was performed using both HSV and RGB spaces. However, practically

no difference was seen in the ability to detect body parts in the video sequences and

so, in an effort to reduce processing time, we decided to simply leave the pixel data

in its raw RGB format.

We believe that a more fruitful modification to the body part detection would be
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to use an alternate, more flexible, classifier instead of the single Gaussian classifier.

As can be seen in figure 3.2, the actual color distributions from the training data are

not particularly well fitted by simple mean and covariance values. This is especially

true when training data contains color saturation clustering. Instead, it would likely

be more reasonable to use a multivariate Gaussian, or a non-parametric method such

as nearest-neighbors or support vector machines (SVMs) to better fit the data.

We used single Gaussian distributions because we believed it would require the

minimal amount of processing time per pixel. However, as a lookup table of body

part probabilities for all 125,000 possible quantized colors is precomputed during

the training stage, the amount of time to process a single RGB value is constant

for any classifier. The prior generation of a lookup table means that the increased

processing time required for a more computationally intensive classifier will not change

the processing rate during the real-time imitation, and this frees us to choose the best

performing classifier with no concern for computational burden.

6.2 Time Smoothing of Joint Location Maps

One of the biggest limitations of our system is its inability to generate poses when

only a limited number of body parts are visible in the monocular image. It is essential

for a monocular vision system to be robust to partial occlusion of different joints as it

is likely to occur frequently. Ideally, we need to design the algorithm so that even if

the instructor puts his hand behind his back, or is partially blocked by other objects

in the room, the system can still make a best guess at an appropriate set of motor

commands for the robot to perform.

Often, a single joint is only occluded for a brief moment during the course of the

instructor’s gesture. For example, when performing a kicking motion, the left knee

is temporarily blocked from view by the swinging right leg. This occlusion only lasts

for a few frames and it is patently clear to a human viewer that the left leg has

simply stayed in its previous location during the time period that it was not visible.
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However, the final system presented in this thesis takes no measures to gracefully

handle temporary occlusions. It instead simply skips any video frame where every

joint on the body is not sufficiently well localized.

One solution to the issue of temporary occlusion is to use time smoothing of the

joint location PDFs to allow the system to hallucinate joints when they are not visible.

We performed some early experiments using the concept of joint location smoothing

over time but the extra processing required and the inability to perform joint map

generation in parallel left us with a system that could no longer run in real-time. As

the final goal was to make a real-time imitation system, we were forced to disable

joint smoothing in the final version of the demonstrated system. In the interest of

completeness, we will present here this time smoothing portion of the algorithm which

was eventually removed from the final system.

For every frame of the video, a joint location PDF is initially generated using the

steps described in section 3.2. For time smoothing purposes we can assume that we

now have access to the joint location PDFs for N frames in the future and N frames

in the past. Thus, to improve the localization of the current joint map, Pt, we can

modify it by multiplying it together with spatially blurred versions of past and future

joint location PDFs. The blurring operation is a convolution with a Gaussian kernel

h where the variance of the kernel σ is proportional to the time difference with the

current time t. Thus, using the equation

Pt =
t+N∏

n=t−N

(Pn ⊗ hσ∝n) , (6.1)

we can refine the PDF of the current time frame to take into account our estimates

of likely joint locations in future and past frames and even hallucinate reasonable

joint maps for frames with full occlusion. Figure 6.1, shows an example of how a

joint location PDF for an occluded joint in the current frame could be successfully

hallucinated through time smoothing.
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Figure 6.1: Example of time smoothing for joint location PDFs. Blurred versions
of the joint maps for future and past times are multiplied together to hallucinate a
reasonable joint location PDF for the occluded joint at time t = 0.
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6.3 Visual Cues for Additional Depth Information

There are many visual cues in images besides length foreshortening that help us de-

termine 3D information about a scene. Examples of these visual cues include shadow

analysis and partial occlusion detection. In future improvements to the work in this

thesis, it would be reasonable to improve the search for the final motor commands by

taking into account these visual cues about the likely 3D locations of different joints.

Notably, if time smoothing of joint locations was implemented as described in the

previous section, it would be relatively easy to detect relational occlusion between

body parts and use that information to inform the final pose selection. For exam-

ple, if we find that the smoothed PDF for a joint differs greatly from its original

unsmoothed PDF and also has a high amount of overlap with another joint’s PDF,

then we can guess that the first joint is located behind the second joint. Then, when

performing the path search through the possible motor commands in the final stage of

the algorithm, weights could be applied to the candidate poses based on these visual

cues so that poses that exhibit the expected depth relationship between the two joints

are preferred.
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Chapter 7

DISCUSSION

In this thesis we have described a fully functioning, closed-loop system for train-

ing a humanoid robot to imitate human gestures in real-time. To the best of our

knowledge, this is the first time that an uncalibrated monocular vision system has

been used in a relatively unconstrained environment to demonstrate real-time gesture

imitation in a humanoid robot. Despite the successes of our work, it is important

to discuss here the drawbacks that limit the usefulness of our system for training

humanoid robots to perform gestures.

Perhaps the most glaring drawback of our work is the requirement that the in-

structor wear a colored body suit while teaching the robot to move. Admittedly, it

would be ideal to remove this restriction, and there is a fair amount of work being

done currently by other researchers to extract 3D human poses from video sequences

that do not require colored clothing. But most of these algorithms are still in their

infancy, and for the specific task of training a robot to perform gestures through

watching an instructor, it is not unreasonable or overly burdensome to require that

the instructor wear a specific shirt and pants while training the robot. Also, com-

pared to the commonly used marker-based, multi-camera motion capture systems,

our clothing requirements are quite manageable, our setup time is minimal and our

environmental restrictions are practically non-existent.

A much greater theoretical drawback to our system is perhaps that it is overly

dedicated to the concept that imitation of human actions should involve simply posi-

tioning a robot’s joints at specific locations in space. It is hard to imagine practical

situations where the goal of imitation is simply to look like a human. More realisti-
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cally, we will be interested in teaching a robot to perform a task with no concern for

the visual appearance of the robot’s motions. For example, we may want to teach a

robot to pick up an object and place it on a shelf. In this situation it would be of no

use for the robot to simply perform lifting and placing gestures in an empty imitation

of the instructor. Instead we want the robot to be able to infer the trainer’s goals

through interpretation of his behavior and then generate whatever motor commands

are necessary to accomplish that goal.

With this realistic criticism in mind, we think that the usefulness of our system

might lie more in using the 3D extracted pose information to classify and recognize

different types of gestures. In this way, human gestures could be used to communicate

with the robot or to prompt the robot to perform certain previously learned tasks.
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