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ABSTRACT 

 
Airborne surveillance presents challenging target-detection opportunities for optical remote sensors, especially under 
the constraints of size, weight, and power imposed by small aircraft.  We present a spatial-frequency dependent figure-
of-merit, called the Detector Quantum Efficiency (DQE), by first tracing its origins in single pixel photon multiplication 
detectors, where it is shown to be yield (quantum efficiency or QE) divided by the noise factor.  We then show the 
relationship of DQE to several well-known figures-of-merit.  Finally we broaden the definition of DQE to include the 
spatial-frequency dependence on the MTF of the system and the noise power spectrum (NPS) of the detector.  We then 
present the results of the application of this DQE to a hyperspectral camera under development at BAE Systems 
Spectral Solutions LLC. 
 
Keywords: Figure-of-merit, detector quantum efficiency, photon transfer curve, Poisson noise, SNR, MTF, noise 

equivalent quanta, noise equivalent spectral radiance, noise equivalent power, noise figure, D*, hyperspectral 
pushbroom sensor, radiometric calibration, Contrast Sensitivity Function, CSF. 

1. INTRODUCTION 
Automatic target detection, discrimination and identification are the goal of all airborne and spaceborne hyperspectral 
and multispectral sensors.  To satisfy a growing demand in imaging spectrometry, BAE Systems Spectral Solutions 
LLC has been developing compact hyperspectral sensors (VNIR, SWIR, MWIR) for a variety of flight platforms and 
cameras (defined as focal plane arrays with supporting electronics).  Smaller size, less weight, less operating power with 
greater performance (spectral range, dynamic range, higher speed, greater resolution) are the key drivers in the new 
generation of hyperspectral cameras.  These systems contain many key submodules: a fore-optics assembly, slit, 
spectrometer, order-sorting filter and a CCD camera, all of which must contribute to some performance metric or figure-
of-merit which represents the radiometric performance and resolving power of the instrument as whole.  We introduce 
such a figure-of-merit in this paper.   
 
Before the spatial context of objects can be recognized, the hyperspectral images must first be reconstructed with the 
proper spatial character.  The key to proper image reconstruction is the characterization of noise and optical 
imperfections in the system.  This characterization or design parameter verification includes photon transfer curves1, 
modulation transfer functions (MTF), noise power spectra, noise equivalent power, noise equivalent spectral radiance 
and other attributes, all of which describe one or other aspect of the electro-optical system.  In the end, what is needed is 
an acceptable common figure-of-merit incorporating all of these methods, valid for a wide variety of image sensors.  
The need for such a common comparison standard becomes even more pressing with the development of ever more 
sophisticated sensors2, both for design and verification.  Newer sensors show great promise of suppressing all electronic 
noise except for inherent Poisson noise, permitting operation in the so-called shot-noise limited regime. 
 
Hyperspectral sensor characterization is divided into three categories: image quality, spectral fidelity (smile and 
keystone) and radiometric performance3.  Fortunately, the development of modern sensors has been matched by 
continuing progress in image quality assessment.  A short history of image quality assessment includes: 
the work of pioneers like Albert Rose4, the development of concepts like the detective quantum efficiency (DQE) via a 
branching theory approach by Zweig5, its generalization to a spatial-frequency dependent DQE by Shaw and his co-
workers6, the transfer matrix information-theoretic approach of Barrett, Cunningham and others7, and finally, the linkup 
with signal detectability amidst clutter8.  One goal of this paper is to explore the consequences of bringing some of these 
concepts to remote sensing.  In particular, we suggest the adoption of Shaw’s spatial-frequency dependent DQE, which 



 

 

brings together measurements of the image quality (MTF), the noise power spectrum (or interpixel correlation of the 
camera and its supporting amplifier), and the radiometric performance at all spatial frequencies.  The fact that this 
spatial-frequency dependent DQE may have a peak at a certain wave number suggests that the camera is most sensitive 
to objects of a certain size. 
 
We proceed as follows in this paper: 

1. We first show how the single pixel DQE follows from general noise multiplication concepts. 
2. We relate this DQE to some well-known figures of merit such as noise equivalent power (NEP), noise 

equivalent spectral radiance, noise equivalent quanta (Q), andD
*.   We exhibit one of the main losses in the 

hyperspectral system: the grating efficiency. 
3. We introduce a generalized spatial-frequency dependent DQE which not only includes the benefits of the 

figures-of-merit above but also the system MTF and the detector’s noise power spectrum (NPS). 
4. We evaluate this generalized DQE for a hyperspectral sensor under development at BAE Systems Spectral 

Solutions LLC. 
 
Our main goal is to provide a framework and establish a nomenclature for the further development and validation of 
these ideas in the characterization of all hyperspectral and multispectral cameras. 

2. STOCHASTIC AMPLIFICATION FOR A SINGLE DETECTOR ELEMENT 
In this section we define the noise figure (NF) and detector quantum efficiency (DQE) for a detector operating in a shot 
noise limited condition, the normal operating regime.  In the next section, we introduce noise sources other than shot 
noise.  We begin with space-independent quantities by concentrating on a single detector element or pixel, and then 
generalize this to space-dependent quantities for a detector array. 
 
The basic detector model is one of stochastic charge multiplication created by an incoming photon.  The incoming 
photon obeys Poisson statistics, and is absorbed in the detector with a probability given by the yield (or quantum 
efficiency λQE ).  We consider this absorption as the 1=i stage of the detection process.  Thereafter the secondary 

electrons may go through a series of multiplication stages ( )2 1≤ ≤ −i N which introduce a gain at each stage which has 
a mean and standard deviation, due to the randomness of charge multiplication (Fig. 1).  
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Fig. 1. Photons to photoelectrons to DN  units in a charge-multiplying sensor. 

The last stage ( )i N= , which we call “video gain”, is typically a conversion from photoelectrons to digital numbers 

(DN).  It is deterministic, and includes A/D circuitry and a scaler. 

2.1. Noise figure and detective quantum efficiency 
Our approach to charge multiplication is the theory of branching processes, and our starting point is the moment 
generating function (MGF, or the z-transform of the discrete probability distribution function9).  At each stage of the 
multiplication process in a charge-multiplying sensor, each photon (or photo-electron) has the PDF nP  of becoming 

n photo-electrons.  Then the MGF of this PDF is 

( )
0

n
n

n

f z P z
∞

=

≡ ∑    (2.1) 

where z is the complex transform variable.  The mean number of daughter photoelectrons and variance are then10 
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respectively, making use of  
( )1 1=f .  (2.4) 

If we label each stage of the multiplication process by i , where i ranges from 0 (incoming photon, at the zeroth stage) 
to N , then by the theory of branching processes11, the overall MGF is given by the iterated function 

( ) ( )( )( )( )overall 0 1 2 ...= Nf z f f f f z   (2.5) 

with mean and variance definitions given by12 
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where we have defined an end-to-end system noise factor called absoluteF : 
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with noise factors at each stage given by 
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Equation (2.7) for absoluteF  in terms of the individual noise factors Fi.  (2.8)is known as Friis’ formula in power amplifier 
theory13 and antenna noise temperature theory14, but in order to be consistent with the stochastic multiplication model, 
the definition of each Fi differs somewhat from the normal circuit definition of Fi in that the noise 2∆ in at the thi stage 

is referred back to the source.  

2.2. An important special case: noise factor for incoming photons with Poisson and binary absorption statistics 
Except for nonideal effects such as dead-time15 in some high-energy photon counters, the zeroth stage of the stochastic 
model above is invariably one describing Poisson statistics.  In this case, 

[ ]2
0 0  ph∆ =n n   (2.9) 

 For a simple detector model with no scattering, the next stage is absorption of an incoming photon by the detector 
material with probability 1 λ=n QE  and a variance of ( )2

1 1λ λ∆ = −n QE QE in a PDF with only two choices: 

absorption or transmission.  With these values, the noise factor becomes 
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λ
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  (2.10) 

where the part of absoluteF independent ofQEλ , designated F , is attributed to the amplifier alone: 
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with the Poisson excess (equal to zero at the thi stage if that stage obeys strict Poisson statistics) defined as 
2
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If stochastic multiplication noise were the only source of noise, we may define detector quantum efficiency as the 
inverse of the overall noise factor: 
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The DQE is therefore essentially the QE reduced by the noise factor.  If the multiplication gains were deterministic (no 
gain variances), the DQE would be equal to the QE.   

2.3. Shaw’s noise equivalent quanta (NEQ) and Janesick’s photon transfer curve (PTC) for shot-noise limited 
detectors 
The output squared SNR is given a special definition, the noise equivalent quanta (NEQ)16 
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A graph of 2
,σ Shot DN vs. DNS has a slope of a modified overall gain absolute =F R FG .  This is in fact Janesick’s photon 

transfer curve (PTC) without the constant background noise term.  The PTC provides a way to extract the total system 
gain G if F were known, at least in principal. 

2.4. Experimental results for photo-response factor, noise factor, photon transfer curves, and yield 

The linearity of a charge-multiplying sensor can be checked.  Fig. 2 gives the plot of signal DNS vs. 0n with 

slope R QE Gλ= . 



 

 

 
Experimental values for F as a function of gain ratio G  has been obtained by DeWeert et al. 17for a charge-multiplying 

sensor.  Using narrow-band light, they followed Robbins and Hadwen in plotting the PTC of
2

,σ Shot DN

G
against DNS , 

which has a slope F above the fixed read noise floor (Fig. 3). 
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Fig. 2.  Output signal DNS  vs. input photons 0n  with slope R  in the photon limited region. 
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Fig. 3. 2

,σ Shot DN G  vs. DNS .  The slope is F for the portion well above the noise floor. 
 
They then obtained the noise figure F as a function of G in Fig. 4. 
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Fig. 4. Noise factor F vs. gain ratio G . 

This is in line with the type of behavior for F  derived by Bell19 and McIntyre20 for multiplication devices like 
microchannel plates and avalanche photodiodes incorporating both electron and hole multiplication.  The exact physical 
model for any particular charge-multiplying sensor requires a thorough understanding of the underlying photonics. 

2.5. Connection of DQE with NESR, NEP and *D  
A number of commonly used benchmarks make use of light power, instead of quanta.  In this picture, the incoming 
photon number is 
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The noise equivalent spectral radiance (NESR) is the brightness which gives a particular output NEQ21, viz. 
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where # focal length
lens diameter

F ≡ , and we have used some industry-wide figure-of-merits: *D  and noise-equivalent power 

NEP: 
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Thus except for a proportionality constant, *D is essentially the DQE. 

2.6. NESR AND NEQ FOR PUSHBROOM SENSORS 
To avoid smearing in pushbroom sensors, the integration time cannot be greater than the time it takes to cover the 
ground sample distance (GSD) for a platform moving with ground speed gv .  With 
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we get 
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where cA is the area of clear aperture.  Conversely, a broadband source with specific intensity Iν , the broadband NEQ 
can be calculated from the formula 
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The transmission loss factor ( )τ ν includes variables which depend on the environment, such as atmospheric losses, 

ground albedo, geometrical factors22, and fore-optics losses of the system.  But for spectrometers, one of the biggest 
wavelength-dependent losses is the intrinsic grating efficiency.  Grating efficiency is highest for blazed gratings 
produced by high-cost lithographic methods.  “Holographic” gratings produced by interference methods may be used 
instead for prototyping because of their relatively low cost.  BAE Systems have used both types in their sensors.  
Typical normalized grating efficiencies, calculated using the Kirchhoff approximation23, are shown in Fig. 5. 
 

3. DQE AND NOISE FIGURE WITH GENERAL NOISE TERMS 
We can generalize the quantities we defined previously to the case where additional noise terms other than Poisson 
noise become important.  We find that the only term that needs modification is the overall noise figure, which becomes: 
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It is possible to include additional noise terms depending on the particular detector, but this expression agrees with the 
one derived by Bell.  When the noise equivalent power is substituted for Pν , we get 
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and this is the expression for DQE to be used in *D  for this general case.  Note that the dependence on NEQ goes away 
for shot-noise limited operation. 
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Fig. 5.  Normalized theoretical grating efficiency as a function of wavelength, for blazed (upper) and holographic 
gratings (lower). 
 

4. GENERALIZED DQE AS A FIGURE OF MERIT: STOCHASTIC AMPLIFICATION FOR DETECTOR 
ARRAYS 
For a single pixel, we have related the known figure-of-merits to the DQE.  We now generalize this DQE to include 
linear array and area detectors.  First we notice that the incident power νP  contains the useful portion of the signal targetP  

as well as the clutter clutterP .  The difference between the two may be defined as a contrast: 
2

target clutter2

target clutter

 −
=   + 

P P
m

P P
  (4.1) 

As this contrast has no spatial wavelength dependence, it seems natural to generalize DQE to 2 2DQE MTFm .  This has 
indeed been put on a logical statistical basis by Shaw24, Rabbiani, Mulder,25 and others, who absorbed the MTF into the 
definition of a spatial-frequency dependent ( )DQE k , as follows: 
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where k is the spatial frequency, and the output noise power spectrum ( )dNPS k  and MTF have the respective 

normalizations ( ) 2
d ,NPS Shot DNd σ
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=∫ k k  and ( )MTF 0 1=    The noise power spectrum is defined as26  
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where ( )FX is the Fourier transform in the region of interest X , and ( )d∆ x is the zero-mean random scene, with 
suitable modifications for discrete Fourier transforms.  It is equal to the Fourier transform of the autocovariance 
function. 
 
Once ( )DQE k has been defined, all other spatial-frequency figures-of-merit such as ( )*D k and ( )NEP k can be defined 
in terms of it, as we did above for a single pixel detector.  All the formulae derived in the earlier sections can be 
rewritten with this spatial-frequency dependence the only modification.  Cunningham and Shaw27 have reviewed the 
history of ( )DQE k  and its accompanying signal- and noise-transfer theory.  The modeling of ( )DQE k  of staged 
detector systems in increasing detail, incorporating stochastic amplification and scattering both in series and parallel28 , 
and noise aliasing due to varying modes of image transfer29, in the context of Poisson point processes, is an ongoing 
branch of research.  ( )DQE k was initially introduced to describe the noise-limited detectability of low-contrast 
structures in a uniform background; so its information-theoretic justification30, for Gaussian and Poisson noise, and its 
relationship to iterative image reconstruction methods, awaits further study. 

4.1. MTF, DQE and NPS results 
The MTF of a typical detector used in a multispectral or hyperspectral sensor is shown in Fig. 631. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

Frequency (lp/mm)

M
T

F

 

Fig. 6.  Sensor MTF for a multispectral or hyperspectral sensor up to the Nyquist limit. 



 

 

For both multispectral and hyperspectral cameras, one of the camera axes is chosen to be parallel to the motion (along-
track direction) and the other transverse to the motion, but for hyperspectral cameras in a pushbroom configuration, the 
along-track direction is also the direction of spectral dispersion.  In this spectral direction, there is a direct translation of 
length (mm) into photon wavelength (nm), leading to a relabeling of the abscissa units in Fig. 6 from lp/mm to lp/nm).  
At the same time, the finite width of the slit, which masks off the entire scene except for a width equivalent to one 
IFOV, admits some spatial components into the spectral direction as well. We will discuss the implications of these 
subtleties in a future study.  For the moment we can assume that the concept of MTF applies equally well without 
modification to both multispectral and hyperspectral sensors.   
The normalized noise power spectrum, defined as ( ) 2

d ,NPS σ Shot DNk for the same camera is shown in Fig. 7: 
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Fig.  7.  Normalized noise power spectrum for CCD camera in pushbroom configuration as a function of 
spatial frequency.  Thick line – spatial direction cross-track, thin line – spectral direction, along-track.  

 
The small peak at higher frequencies may be an indication of the presence of periodic fixed pattern noise both in the 
along-track and cross-track directions.  The difference in the response in the two directions may have several causes, 
such as an intrinsic difference in cross-pixel correlations along different directions, or differences in how the image is 
read out in the different directions. 
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has a peak at a wavenumber which is not zero (Fig. 8). The existence of an optimal spatial frequency for contrast 
sensitivity is well known from studies of the contrast sensitivity function (CSF) of the human visual system32,33, which 
peaks at about 4 cycles/degree.  The differences in the DQE in the two directions, the implications of peaks in the DQE, 
and the relationship of DQE to the CSF, await further study.  
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Fig. 8. Normalized DQE for CCD camera in pushbroom configuration as a function of spatial frequency.  
Thick line – spatial direction cross-track, thin line – spectral direction, along-track. 

 

5. CONCLUSIONS 
We have proposed a figure-of-merit called the DQE which underlies the definition of almost all radiometric figures-of-

merit such as NEQ and *D  can.  We showed how this DQE is just the yield (quantum efficiency) divided by the noise 
figure for a single pixel.  We also demonstrated how almost all conventional figures of merit can be expressed in terms 
of it.  We then generalized this DQE to camera arrays with vector wavenumber dependence.  For hyperspectral sensors, 
the wavenumber along-track is the spectral dimension, and the wavenumber cross-track is the spatial dimension.  We 
presented an example of a typical spatial-frequency dependent DQE calculation for a hyperspectral camera, and showed 
how the instrument is most sensitive to features of a certain size.  This leads to the interesting question of how this will 
relate to observer dependent measures such as receiver operating characteristics.  The exact connection with this and 
other detectability metrics, and the validation of these metrics, will be the subject of future investigations. 
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